Copied to
clipboard

G = C62:C9order 324 = 22·34

1st semidirect product of C62 and C9 acting via C9/C3=C3

metabelian, soluble, monomial

Aliases: C62:1C9, C33.1A4, C62.17C32, C32:(C3.A4), (C3xC62).1C3, (C2xC6).11He3, C3.2(C32:A4), C22:2(C32:C9), C32.19(C3xA4), C3.2(C32.A4), (C2xC6).43- 1+2, (C3xC3.A4):5C3, (C2xC6).9(C3xC9), C3.5(C3xC3.A4), SmallGroup(324,59)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C62:C9
C1C22C2xC6C62C3xC3.A4 — C62:C9
C22C2xC6 — C62:C9
C1C32C33

Generators and relations for C62:C9
 G = < a,b,c | a6=b6=c9=1, ab=ba, cac-1=ab-1, cbc-1=a3b4 >

Subgroups: 205 in 74 conjugacy classes, 24 normal (11 characteristic)
C1, C2, C3, C3, C3, C22, C6, C9, C32, C32, C32, C2xC6, C2xC6, C2xC6, C3xC6, C3xC9, C33, C3.A4, C62, C62, C62, C32xC6, C32:C9, C3xC3.A4, C3xC62, C62:C9
Quotients: C1, C3, C9, C32, A4, C3xC9, He3, 3- 1+2, C3.A4, C3xA4, C32:C9, C3xC3.A4, C32.A4, C32:A4, C62:C9

Smallest permutation representation of C62:C9
On 54 points
Generators in S54
(1 30 7 36 4 33)(2 52 19 28 39 16)(3 26 43)(5 46 22 31 42 10)(6 20 37)(8 49 25 34 45 13)(9 23 40)(11 53 35)(12 27 18 24 15 21)(14 47 29)(17 50 32)(38 54 44 51 41 48)
(1 21 44)(2 10 45 28 22 49)(3 11 37 29 23 50)(4 24 38)(5 13 39 31 25 52)(6 14 40 32 26 53)(7 27 41)(8 16 42 34 19 46)(9 17 43 35 20 47)(12 51 30)(15 54 33)(18 48 36)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,30,7,36,4,33)(2,52,19,28,39,16)(3,26,43)(5,46,22,31,42,10)(6,20,37)(8,49,25,34,45,13)(9,23,40)(11,53,35)(12,27,18,24,15,21)(14,47,29)(17,50,32)(38,54,44,51,41,48), (1,21,44)(2,10,45,28,22,49)(3,11,37,29,23,50)(4,24,38)(5,13,39,31,25,52)(6,14,40,32,26,53)(7,27,41)(8,16,42,34,19,46)(9,17,43,35,20,47)(12,51,30)(15,54,33)(18,48,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,30,7,36,4,33)(2,52,19,28,39,16)(3,26,43)(5,46,22,31,42,10)(6,20,37)(8,49,25,34,45,13)(9,23,40)(11,53,35)(12,27,18,24,15,21)(14,47,29)(17,50,32)(38,54,44,51,41,48), (1,21,44)(2,10,45,28,22,49)(3,11,37,29,23,50)(4,24,38)(5,13,39,31,25,52)(6,14,40,32,26,53)(7,27,41)(8,16,42,34,19,46)(9,17,43,35,20,47)(12,51,30)(15,54,33)(18,48,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,30,7,36,4,33),(2,52,19,28,39,16),(3,26,43),(5,46,22,31,42,10),(6,20,37),(8,49,25,34,45,13),(9,23,40),(11,53,35),(12,27,18,24,15,21),(14,47,29),(17,50,32),(38,54,44,51,41,48)], [(1,21,44),(2,10,45,28,22,49),(3,11,37,29,23,50),(4,24,38),(5,13,39,31,25,52),(6,14,40,32,26,53),(7,27,41),(8,16,42,34,19,46),(9,17,43,35,20,47),(12,51,30),(15,54,33),(18,48,36)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)]])

60 conjugacy classes

class 1  2 3A···3H3I···3N6A···6Z9A···9R
order123···33···36···69···9
size131···13···33···312···12

60 irreducible representations

dim11113333333
type++
imageC1C3C3C9A4He33- 1+2C3.A4C3xA4C32.A4C32:A4
kernelC62:C9C3xC3.A4C3xC62C62C33C2xC6C2xC6C32C32C3C3
# reps1621812462126

Matrix representation of C62:C9 in GL4(F19) generated by

11000
0800
0010
00012
,
1000
0700
00120
00012
,
6000
0010
0001
01100
G:=sub<GL(4,GF(19))| [11,0,0,0,0,8,0,0,0,0,1,0,0,0,0,12],[1,0,0,0,0,7,0,0,0,0,12,0,0,0,0,12],[6,0,0,0,0,0,0,11,0,1,0,0,0,0,1,0] >;

C62:C9 in GAP, Magma, Sage, TeX

C_6^2\rtimes C_9
% in TeX

G:=Group("C6^2:C9");
// GroupNames label

G:=SmallGroup(324,59);
// by ID

G=gap.SmallGroup(324,59);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,54,361,4864,8753]);
// Polycyclic

G:=Group<a,b,c|a^6=b^6=c^9=1,a*b=b*a,c*a*c^-1=a*b^-1,c*b*c^-1=a^3*b^4>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<